Search for question
Question

What is the solution for the differential equation: \frac{d y}{d x}+4 . y=e^{-6 . x} It is given that at the point x = 0, y = 0.3. All decimals

have been given to 2 significant figures. \text { ○ } y=(-0.50) \cdot e^{-6 \cdot x}+(-0.20) \cdot e^{-4 \cdot x} \bigcirc y=(-0.50) \cdot e^{-6 . x}-(0.80) \cdot e^{-4 . x} \bigcirc y=(0.80) \cdot e^{-6 . x}+(-0.50) \cdot e^{-4 . x} y=(-0.50) \cdot e^{-6 . x}+(0.80) \cdot e^{-4 . x}

Fig: 1

Fig: 2

Fig: 3

Fig: 4

Fig: 5

Fig: 6

Fig: 7

Fig: 8