Search for question
Question

For the following set of differential equations: \frac{d x_{1}}{d t}=2 x_{1}+x_{2}-F(t) \text { and } \frac{d x_{2}}{d t}=x_{1}+F(t) Find the input/output equation describing a1given the force F (t) \text {

O } \frac{d^{2} x_{1}}{d t^{2}}-2 \frac{d x_{1}}{d t}-x_{1}=-\frac{d}{d t} F(t)+F(t) \text { } \frac{d^{2} x_{1}}{d t^{2}}+2 \frac{d x_{1}}{d t}+x_{1}=+\frac{d}{d t} F(t)+F(t) \left(\frac{d^{2} x_{1}}{d t^{2}}+2 \frac{d x_{1}}{d t}-x_{1}=-\frac{d}{d t} F(t)+F(t)\right. O \frac{d x_{1}}{d t}-x_{1}=F(t)

Fig: 1

Fig: 2

Fig: 3

Fig: 4

Fig: 5

Fig: 6

Fig: 7