partial differential equation

Questions & Answers

Question 41208

Verified

Partial differential equation

Consider the following ODE with given IC:

Y^{\prime}(x)=x^{2} \cos (Y(x))^{2}, Y(0)=1

\text { and answer the following questions: }

\text { What is } \frac{\partial f(x, z)}{\partial z} ?

c) Find the analytical solution Y(x) and verify where it exists.

In what region of x will the solution exist?

Question 39128

Verified

Partial differential equation

4. Find the solution and final value (when t→ 0) of the following differential equation by using Laplace transform. Include the mathematical method to justify your solution and state any properties of Laplace Transforms that you have used to perform your manipulations. (12)

\frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+c x=2 e^{-4 t}

\text { Where } \frac{d x}{d t}=1 \text { and } x=0 \text { when } t=0

b=3 \text { and } c=3

Question 39127

Verified

Partial differential equation

3. The vibration of a cable supporting a suspension bridge can be described by the one- dimensional wave equation,

\frac{\partial^{2} u}{\partial t^{2}}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}

The problem has the following boundary and initial conditions:

• Is the trial solution u(x,t) = g(t)sin(-x) sensible for this problem, discuss10why/why not. (3)

\text { Using the trial solution } u(x, t)=g(t) \sin \left(\frac{n \pi}{10} x\right), \text { convert the wave equation }

into a single ODE and find its general solution. (6)

c) Write the general solution to the PDE and solve for the unknown constants. (6)

Question 39126

Verified

Partial differential equation

2. A support for electrified railway cables is cantilevered from the side of the track by a beam with spring stiffness k. The mass of the beam is 3M and is assumed to be concentrated at the free end. The cable, of mass 2M, is supported by a spring of

stiffness k from the end of the cantilever.

The system of equations governing the motion of the system is:

3 M y_{1}^{\prime \prime}=-2 k y_{1}+k y_{2}

2 M \ddot{y}_{2}=k y_{1}-k y_{2}

k = 22

Write the above system of differential equations in matrix form. Then, by considering the trial solution: y = e"X, show

that system can be written as an eigenvalue problem. (3)

b) Find the general solution for the system of equations by solving the eigenvalue problem. (12)

Question 39125

Verified

Partial differential equation

\text { Consider the piecewise periodic function } f(t) \text { with a period of } 2 \pi \text { : }

a) Write the Fourier series expansion of f(t).

c) Write the Fourier series expansion found in (a) in Amplitude-phaseform. (3)

Question 35091

Verified

Partial differential equation

2d. Explain why this function is a one-to-one function (10 pts)

Question 35090

Verified

Partial differential equation

2b Demonstrate how this function works using the domain, and range. (5 pts)

Question 35089

Verified

Partial differential equation

2a. Give your own real life example of a one-to-one function. State what the domain and range values represents. (10 pts)

Question 35088

Verified

Partial differential equation

1c. Explain why it is necessary for this function to be defined piece-wise (6 pts)

Question 35087

Verified

Partial differential equation

1b. Calculate f(x) for two values of x. Explain what these results mean. (12 pts)

No Search results found!

Kindly submit your queries
we will make sure available to you as soon as possible.

Search Other Question


Submit query

Getting answers to your urgent problems is simple. Submit your query in the given box and get answers Instantly.

Submit a new Query

Please Add files or description to proceed

Success

Assignment is successfully created

News & Offers


  • Offers
  • Flash sale on now! Get 20% off until 25th June, online at TutorBin. Use discount code ALK&8JH at Tutorbin.com/Booking
  • News
  • Latest Blog Published:
    [Blog Name], online at [Time]
  • News
  • Latest Blog Published:
    [Blog Name], online at [Time]