Search for question
Question

1. An observer has determined that the time headways between successive vehicles on a section of highway are exponentially distributed and that 65% of the headways between vehicles are 9 seconds or greater. If the observer decides to count traffic in 30 second time intervals, estimate the probability of the observer counting exactly 5 vehicles in an interval. 2. At a specified point on a highway, vehicles are known to arrive according to a Poisson process. Vehicles are counted in 20-second intervals, and vehicle counts are taken in 120 of these time intervals. It is noted that no cars arrive in 18 of these 120 intervals. Approximate the number of these 120 intervals in which exactly three cars arrive. 3. Vehicles begin to arrive at a park entrance at 7:45 A.M. at a constant rate of six per minute and at a constant rate of four vehicles per minute from 8:00 A.M. on. The park opens at 8:00 A.M. and the manager wants to set the departure rate so that the average delay per vehicle is no greater than 9 minutes (measured from the time of the first arrival until the total queue clears). Assuming D/D/1 queuing, what is the minimum departure rate needed to achieve this? 4. At 8:00 A.M. there are 10 vehicles in a queue at a toll booth and vehicles are arriving at a rate of X(t)=6.9-0.2t . Beginning at 8 A.M., vehicles are being serviced at a rate of u(t)=2.1+0.3t ( \(t)and u(t) are in vehicles per minute and t is in minutes after 8:00 A.M.). Assuming D/D/1 queuing, what is the maximum queue length, and what would the total delay be from 8:00 A.M. until the queue clears?