a| < 1/m when n> N. (b) For each 0 < ɛ < 1, there is an integer N > 0 such that |an- a| < 3ɛ when n > N. (c) For each 0 < ɛ < 1, there is an integer N> 0 such that |an- a| < 1/ɛ when n > N. (d) For each N > 0, there is ɛ > 0 such that |an – a| < 1/N when n > N + ɛ . \text { (e) For each } \varepsilon>0 \text { , there is an integer } N>0 \text { such that }\left|a_{n}-\alpha\right|<\varepsilon^{2} \text { when } n>N^{2} \text { . } (f) For each ɛ > 0, there is an integer N > 0 such that an – a < ɛ when n = N + k for all positive integer k. (g) For each ɛ > 0, there is an integer N > 0 such that |an – a| < ɛ when n = N + 2k for all positive integer k.

Fig: 1

Fig: 2

Fig: 3

Fig: 4

Fig: 5

Fig: 6

Fig: 7

Fig: 8