1. A line has slope and x-intercept-2. Find a vector equation of the line.
a. [x, y]-[3, 2]+[-2,0]
c. (x,y]-[-2,0]+[2, 3]
d. [x, y]-[-2,0]+[3,2]
b.
(x,y) = (-2.0) + [ 3.1
2. Write the scalar equation of the plane with normal vector = [0,-1, 3] and passing through the point (5,
-2, 3).
a.y-32+11-0
b. y-3z-11-0
3. In three-space, find the intersection point of the two lines: [x, y, z) = [-1, 2, 0] + [3,−1, 4] and [x, y, z] =
[-6, 8, -1]+[2, -5,-3].
a. (-1,2,0)
b. (-6, 8,-1)
c. -y+32+11-0
d. -y+32+ 16-0
4. Determine the distance between the point (1, 0, 1) and the plane [x, y, 2] = [1, 2, 3] + s[2, 1, 3] + [4, 2, 0].
a. 1.79 units
c. 2.67 units
b. 3.14 units
d.
1.03 units
a. 3.69 units
b. 1.45 units
c. (-4,3,-4)
d. (3, 2, 1)
x=1+t
5. Determine the distance between the point (4, 3, 2) and the planey - 2+s
z=3+5+1
a. 2.33 units
b. 5.12 units
c. 2.01 units
d. 2.89 units
x=2+t
[x=3+5+1
6. Determine the distance between the line y-5- and the planey-2-s-t.
z=1+8-t
c. 1.41 units
d. 0.34 units
7. Determine the distance between the line [x, y, z] = [4, 5, −2] + [1, 1,-1] and the plane [x, y, z] = [2, 4, 3]
+ s[3,2,0] + [[1, 0, 2].
a. 3.48 units
b. 9.11 units
c. 7.22 units
d. 1.60 units
Fig: 1