x^{-1} & 0 0 & \text { otherwise } \end{array}\right. \text { (ii) } f(x)=\left\{\begin{array}{ll} \frac{-2}{(x-\sqrt{2})^{3}} & 0 0 & \text { otherwise } \end{array}\right. \text { (iii) } f(x)=\left\{\begin{array}{ll} \lambda e^{\lambda x} & 0 0 & \text { otherwise } \end{array}\right. (b) We can also use probability density functions to find the expected value of the outcomes of the event – if we repeated a probability experiment many times, the expected value will equal the average of the outcomes of the experiment. (e.g. ſẵxƒ(x) dx yields the expected value for a density f(x) with domain on the real numbers.) Find the expected value for one of the valid probability densities above.
Fig: 1
Fig: 2
Fig: 3
Fig: 4
Fig: 5
Fig: 6
Fig: 7
Fig: 8