Question

3. What is the name of the process by which water forms on the outside of the glass? 4. If NO water is forming on the outside of one glass, explain

why that is or what would need to change in order for you to see water form. Exercise 7.2: 1. The data in Table 1 were recorded on July 18 in Fullerton, California. Notice that the hours are given in military time (e.g., 0100 = 1:00 a.m. and 1300= 1:00 p.m.) and that temperatures are recorded in degrees Fahrenheit. Use the information in Table 1, to plot the air temperature and Relative Humidity experienced on July 18 (plot both on the same graph, using one color for temperature and one for Relative Humidity). Don't forget to label your graph. You can either plot the data on the chart provided OR enter the data into the Excel sheet provided. If you use the Excel sheet, please past a copy of the chart into your lab. Time Temperature (°F) 0000 0100 0200 0300 0400 0500 0600 0700 0800 0900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 65 65 65 65 65 64 65 65 70 72 76 78 81 83 83 83 84 81 79 77 74 70 69 68 TABLE 1 Relative Humidity 83 84 85 86 84 84 83 82 75 71 64 57 55 52 51 50 47 51 56 59 67 75 78 80 N/nLab Seven: Humidity This lab is designed to help you understand the relationship between water vapor content, temperature and humidity. Objectives: Calculate relative humidity . Find relative humidity using sling psychrometer • Determine dew point temperature based on water vapor content Part 1: Relative Humidity and Dew Point Temperature Relative Humidity: Name Mixing Ratio: Saturation Mixing Ratio: Relative Humidity (%): Dew Point Temperature: describes how close the air is to saturation. It is expressed as a ratio of water vapor content (Mixing Ratio) to the total amount of water vapor the air mass can hold (Saturation Mixing Ratio) actual amount of water vapor present in a given parcel of air. Expressed as grams of water vapor/kilogram of dry air (g/kg). amount of water vapor (grams) a parcel of air can hold at a given temperature. Expressed as grams of water vapor/kilogram of air (g/kg). Mixing Ratio (Actual)/ Saturation Mixing Ratio (Capacity) x 100 the temperature to which a given parcel of air must cool, so that relative humidity is 100% Exercise 7.1: At home experiment: Step 1: Place a glass in the freezer until well chilled. Remove and fill with ice and water. Step 2: Take a different glass and fill it with room temperature water. Step 3: Wait 15-20 minutes. Take a picture of both glasses. Examine both glasses, then answer the following questions. 1. Explain, in detail, why water is forming on the outside of one glass but not the other. 2. Give all steps that must have occurred in order to make water form on the outside of the glass.

Fig: 1

Fig: 2