the power factor is 0.7 lagging. The impedance of the 8 branches in Ohm are given as the follows. z(6,7)=30* (3.69+i1*0.094) + 70+ (0.284+i1*0.083); z (7,6)=z(6,7); z(1,7)= 30*(1.380+i1+0.082)+i1*1.6; z(7,1) = z(1,7); z(2,7)=3+30+ (0.497+i1+0.086)+i1+1.6; z(7,2)z(2,7); z(7,8)70* (0.284+i1*0.083);z(8,7)z(7,8); z(8,9)3+35 = (0.284+i1*0.083); z(9,8)z(8,9); z(4,9)30 = (3.690+i1+0.094) +i1*1.6;z(9,4) = z(4,9); z(5,9)=30+ (1.380+i1*0.083) +30* (0.284+i1*0.083) +i1+1.6; z(9,5)z(5,9); z(3,8)=30+ (1.380+i1*0.082)+i1*1.6; z(8,3) =z(3,8);%3D For example, Bus 6 and Bus 7 are connected by a 30 m line (per km impedance is 3.67 + j 0.094 Ohm) and a 70 m line (per km impedance is 0.284 + j 0.083 Ohm). Convert all loads to impedances. Form a 9 by 9 Ybus matrix (per unit) for this system. All DERs are assumed as pure current sources. Please design code and come up with the Ybus matrix • Leave only the five DER buss and reduce the network fro 9 buses to 5 buses. Give the 5 by 5 Ybus matrix. • If we view from Bus 1 and the entire micro-grid is viewed as an impedance, what is the impedance?
Fig: 1
Fig: 2
Fig: 3
Fig: 4
Fig: 5
Fig: 6
Fig: 7
Fig: 8
Fig: 9
Fig: 10
Fig: 11
Fig: 12
Fig: 13
Fig: 14