Question

a) Given that: A=\left(\begin{array}{cc}

7 & -2 \\

6 & 1 \\

5 & -8

\end{array}\right) \quad B=\left(\begin{array}{ccc}

4 & 2 & -3 \\

-5 & -4 & -1

\end{array}\right) \quad D=\left(\begin{array}{ccc}

-3 & 6 & 9 \\

5 & -7 & 2 \\

4 & -6 & 1

\end{array}\right) Find 2(A - B")" Calculate Dx A \text { Given that } E=\left(\begin{array}{ccc}

5 & 4 & 7 \\

2 & 3 & -2 \\

-4 & 9 & -3

\end{array}\right) i) Find cofactor of elements e11, e12 and e13 \text { i) Find cofactor of elements } e_{11}, e_{12} \text { and } e_{13} \text { ii) Find the } \operatorname{det}(E) c) Use the Gaussian elimination (matrix) method to solve the following equations: X + y - z = 4 X - 2y + 3z = -6 2 x +3y + z = 7 i) Find the Eigenvalues and Eigenvectors of the following equations: 7x - 8y = 0 -10x + 9y = 0 ii) State the Characteristic Equation of the Eigenvalues. The coordinates of points A and B are as follows: А(3, -4) and B %3 (-1, 5) \text { Determine the position vectors of } \vec{A}, \vec{B} \text { Determine } \vec{B} A \text { and }|B A| )Find the cosine angle in degrees between vectors B and AB \text { Integrate and simplify the following function: } y=\int-4 x \ln \left(x^{2}\right) d x

Question image 1Question image 2Question image 3Question image 4Question image 5Question image 6Question image 7Question image 8Question image 9Question image 10Question image 11Question image 12Question image 13Question image 14Question image 15Question image 16Question image 17Question image 18Question image 19Question image 20Question image 21Question image 22Question image 23