\delta_{i r} & \delta_{i s} & \delta_{j t} \\
\delta_{j r} & \delta_{j s} & \delta_{j t} \\
\delta_{k r} & \delta_{k s} & \delta_{l t}
\end{array}\right| (c) In quantum mechanics the cartesian components of the angular momentum operator L obey commutation relation [ο‚Îj] = iħ€¿jkÎk. Let a and b be constant vectors and prove the com-mutator identity \left[\hat{\mathbf{L}} \cdot \mathbf{a}_{,} \hat{\mathbf{L}} \cdot \mathbf{b}\right]=\mathbf{i} \hat{\mathbf{L}} \cdot(\mathbf{a} \times \mathbf{b}) (d) Prove that a \times b=\epsilon_{j i b} \hat{\hat{\epsilon}}_{j} b_{j} b_{k}
Fig: 1
Fig: 2
Fig: 3
Fig: 4
Fig: 5
Fig: 6
Fig: 7
Fig: 8
Fig: 9
Fig: 10