Search for question
Question

Figure 1 below shows an early attempt to design, manufacture, and test a Direct Bloodoxygenator. Air, or O2 enriched air, was flown inside a "plastic bag" while blood was released

atthe top of the oxygenator to slowly flow along the plastic bag's walls downward under theinfluence of gravity. Blood and Air were in direct contact, thus supporting a very efficient masstransport of O2 from Air to blood and transport of CO2 from blood to Air. Later, in the mid 20thcentury, scientists and engineers replaced these bags with gas permeable membranes, whichfacilitated gas transport between blood and Air. Nevertheless, the mass transport coefficient inmembrane-supported devices was lower than in the Direct Blood oxygenator. Consider isothermal, steady, unidirectional laminar flow of Blood down the wall of the direct contact oxygenator as illustrated in Figure 2a. The thin film of blood of approximate thickness8 = 165 [um] is flowing due to gravity only. The Shear Stress - Shear Rate data for blood at 25°C is presented in Figure 2b. a) (30 points) Using the data presented in Figure 2b determine the coefficients of the Shear Rate - Shear Stress relationship for Blood. b) (10 points) Apply the continuity equation for this application. What is the conclusion? c) (30 points) Develop a mathematical model [differential equation(s) + boundary conditions]that will represent the flow of Blood in the film along the walls of the plastic bag. Start from the conservation of momentum equations (Navier-Stokes) and show your work for the simplification. d) (50 points) Solve the mathematical model developed in (c) and obtain an algebraic expression that will represent the velocity profile u,(y) of Blood. e) (30 points) Develop the expression for the volumetric flow rate (Q) of blood in the Direct Blood oxygenator. Determine the volumetric flow rate of blood in Q(=)mL/min] if the width of the bag is W = 1.25 [m]. f) (10 points) Make a graph u (y) versus y; use Excel. g) (30 points) If the exponent 'n' in the solutions obtained in parts (d) and (e) is set to n =1,(and n= u) do your solutions reduce to i) velocity profile and ii) volumetric flow rate that could be obtained for a Newtonian fluid. Check and show all your work. Assumptions: The flow is assumed to be fully developed, isothermal, unidirectional and laminar. Momentum transfer between Blood and Air is negligible. One could assume that bloodди,is a non-Newtonian Power-Law fluid: T, =-nдуAlso, ignore entrance and exit effects of Blood flow. State any additional assumption. \begin{aligned} &\text { Momentum equation in } x \text { direction: }\\ &\rho\left[\frac{\partial u_{x}}{\partial t}+u_{x} \frac{\partial u_{x}}{\partial x}+u_{y} \frac{\partial u_{x}}{\partial y}+u_{z} \frac{\partial u_{x}}{\partial z}\right]=-\left[\frac{\partial \tau_{x x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}+\frac{\partial \tau_{x z}}{\partial z}\right]+\rho g_{x} \end{aligned} \begin{aligned} &\text { Momentum equation in } y \text { direction: }\\ &\rho\left[\frac{\partial u_{y}}{\partial t}+u_{x} \frac{\partial u_{y}}{\partial x}+u_{y} \frac{\partial u_{y}}{\partial y}+u_{z} \frac{\partial u_{y}}{\partial z}\right]=-\left[\frac{\partial \tau_{y x}}{\partial x}+\frac{\partial \tau_{y y}}{\partial y}+\frac{\partial \tau_{y z}}{\partial z}\right]+\rho g_{y} \end{aligned} \begin{aligned} &\text { Momentum equation in z direction: }\\ &\rho\left[\frac{\partial u_{z}}{\partial t}+u_{x} \frac{\partial u_{z}}{\partial x}+u_{y} \frac{\partial u_{z}}{\partial y}+u_{z} \frac{\partial u_{z}}{\partial z}\right]=-\left[\frac{\partial \tau_{z x}}{\partial x}+\frac{\partial \tau_{z y}}{\partial y}+\frac{\partial \tau_{z z}}{\partial z}\right]+\rho g_{z} \end{aligned}

Fig: 1

Fig: 2

Fig: 3

Fig: 4

Fig: 5

Fig: 6

Fig: 7

Fig: 8

Fig: 9

Fig: 10

Fig: 11

Fig: 12

Fig: 13

Fig: 14

Fig: 15


Most Viewed Questions Of Mechanics

4.5 Two dogs pull horizontally on ropes attached to a post; the angle between the ropes is 60.0°. If dog A exerts a force of 270 N and dog B exerts a force of 300 N, find the magnitude of the resultant force and the angle it makes with dog A’s rope.


The acceleration of a rocket traveling upward is given by a =(6 + 0.02s)m/s², where s is in meters. Determine the time needed for the rocket to reach an altitude of s =100m. Initially, v=0 and s= 0 when t = 0.


A daring 510 N swimmer dives off a cliff with a running horizontal leap, as shown in the figure. What must her minimum speed be just as she leaves the top of the cliff so that she will miss the ledge at the bottom, which is 1.75 m wide and 9.00 m below the top of the cliff?


II) A high-speed drill reaches 2000 rpm in 0.50 s. ! What is the drill's angular acceleration? Through how many revolutions does it turn during this first0.50 s?


An athlete runs along a straight road. She starts from rest and moves with constant acceleration for 5 seconds, reaching a speed of 8 m s-!. This speed is then maintained forT seconds. She then decelerates at a constant rate until she stops. She has run a total of 500 min 75 s. (a) Sketch a speed-time graph to illustrate the motion of the athlete. (a) Sketch a speed-time graph to illustrate the motion of the athlete. (b) Calculate the value of T.


A farmer hitches her tractor to a sled loaded with firewood and pulls it a distance of 27 m along level ground. The total weight of and load is 12,000 N. The tractor exerts a constant 6000-N force at an angle of 35.0° above the horizontal. There is a 8600 N nor force on the sled from the ground, and a 3500 N friction force opposing the sled's motion. Match each force with the expression or value that corresponds to the work it does on the sled. Each force has a only one correct match. Incorrect expressions must be matched to "No matching force". 1. Tension on the chain pulling the sled 2. Weight of the sled 3. Normal force from the ground on the sled 4. Kinetic friction on the sled 5. No matching force


2/123 During a short interval the slotted guides are designed to move according to x =16 – 12 t + 4t² and y = 2 + 15t – 3t², where x and y are in millimeters and t is in seconds. At the instant when t = 2 s determine the radius of curvature p of the path of he constrained pin P.


5. A car is 2.0 km west of a traffic light at t= 0 and 5.0 km east of a traffic light at t=6 min. Assume the origin of the coordinate system is the light and the positive x direction is eastward. (3 points) а.What are the car's position vectors at these two times? b. What is the car's displacement between 0 min and 6 min? What is the car's average velocity between the two points? Record your answer in terms of kilometres per hour.


9. Three charges with q = +7.5 × 10-6 C are located as shown in Figure 7, with L = 25 cm. Determine the magnitude and direction of the total electric force on each particle listed below. (a) the charge at the bottom (b) the charge on the right (c)an electron placed at the origin . Two pith balls, each with a mass of 5.00 g, are attached to non-conducting threads and suspended from the same point on the ceiling. Each thread has a length of 1.00 m. The balls are then given an identical charge, which causes them to separate. At the point that the electric and gravitational forces balance, the threads are separated by an angle30.0°. Calculate the charge on each pith ball. K ASS


In one type of computer keyboard, each key holds a small metal plate that serves as one plate of a parallel-plate, air-filled capacitor. When the key is depressed, the plate separation decreases and the capacitance increases. Electronic circuitry detects the change in capacitance and thus detects that the key has been pressed. In one particular keyboard,the area of each metal plate is 44.5 mm, and the separation between the plates is 0.71n mm before the key is depressed. Calculate the capacitance before the key is depressed. If the circuitry can detect a change in capacitance of 0.300 pF, how far must the key be depressed before the circuitrydetects its depression?