For the simple electrical systems, shown below. For each system, find the transfer function. (A) GA(s) = VRs)/Vo(s), (B) GB(s) = Vc(s)/E(s) VR: Voltage at Resistance, Vo: input Voltage Vc: Voltage at Capacitance, E: input Voltage in terms of (A) the R, L, and (B) L, R, C. \text { Using } \mathbf{L}=2, \mathrm{R}=2 \text { in figure (A), calculate the angle of } \boldsymbol{G}_{\mathrm{A}}(s) \text { only at } \mathrm{s}=0+\mathrm{jl} Using the values (A), L =2, R =2 and (B), L=1.5, R=1.5, C=1/3,predict (A) vR(t) and (B) va(t)for the unit step Voltage (A) vo(t)) and (B) e(t)), respectively. Using the MATLAB Simulink, plot the step-response for each system. Briefly describe how the arrangement of the resistance, inductance, and capacitance affects the time- response for the voltage of resistance and capacitance, respectively, when a step voltage is applied and compare with your prediction in iii.

Fig: 1

Fig: 2

Fig: 3

Fig: 4

Fig: 5

Fig: 6

Fig: 7

Fig: 8

Fig: 9

Fig: 10