and out-puts. There are several ways to transfer the block diagram into state-space, but let's try to remodelthe state-space from the beginning. \text { - The plant transfer functions give us the plant dynamics } \dot{x}=A x+B u \text { and } u=[u d]^{\wedge} T^{\prime \prime} The sensor H(s) relates the state to the output: y = Cx- - The feedback defines the control law: U(s) = G.(Gf * R(s) - Y(s)), which can be substituted intothe plant dynamics to find the closed-loop form. С.(50%) Simulate the response of the system using basic numerical integration. To a- Reference: r(t) = 5 - Random Noise, normally distributed, zero mean with o = 2: d(t) = 2 * rand() Note you already have the model of the system from the state-space, and this is a linear system.You can calculate the derivative and propagate the system directly.
Fig: 1
Fig: 2
Fig: 3
Fig: 4
Fig: 5
Fig: 6
Fig: 7
Fig: 8
Fig: 9
Fig: 10
Fig: 11