Accumulation and transport within an interface can be important for species that reside at phase boundaries, such as gases adsorbed on solids or surfactants at fluid-fluid interfaces. The objective is to derive more general interfacial conservation statements than those in Section 2.2. Consider a species that may be present at an interface or in either of the adjacent bulk phases. Let Cs and Ng be its surface concentration (moles m2) and surface flux (moles m¹s¹), respectively; note the differences in units from the corresponding three-dimensional quantities. The vector Ng is every- where tangent to the surface.
(a) For part of an interface corresponding to surface S in Fig. A-2, state the macroscopic (integral) solute conservation equation. Assume that phase A is below S and phase B above it, such that n points toward the latter. Include the possibility of chemical reactions at the interface, trans- port to or from the bulk phases, and interfacial motion. The interface is not necessarily planar.
(b) By reducing the integral equation of part (a) to a partial differential equation, show that
at
where N and C are the species flux and concentration, respectively, in a bulk phase. (Sub- scripts identifying the chemical species have been dropped for simplicity.) This result, which is valid instantaneously and locally, is equivalent to Eq. (5.2-2) of Edwards et al. (1991). How does it compare with what is obtained by applying Eq. (2.2-15) to a chemical species?
Fig: 1