Suppose the initial conditions of the economy are characterized by the following equations. In this problem, we assume that prices are fixed at 1 (the price index is 100and when we deflate, we use 1.00) so that nominal wealth equals real wealth. \text { 1) } C=a_{0}+a_{1}(Y-T)+a_{2}(W S M)+a_{3}(W R E)+a_{4}(C C)+a_{5}(r) \left.1^{\prime}\right) C=a_{0}+a_{1}(Y-500)+a_{2}(10,000)+a_{3}(15,000)+a_{4}(100)+a_{5}(2) \text { 2) } \mid=b_{n}+b_{1} A s+b_{2} c F+b_{2}(r) \left.2^{\prime}\right) I=b_{0}+b_{1}(200)+b_{2}(2400)+b_{3}(2) 3) G = G 3') G = 700 4) X-M = X-M 4') X-M = -30o \text { Where: } a_{0}=100, a_{1}=.90, a_{2}=.04, a_{3}=.08, a_{4}=.8, a_{5}=-100, b_{0}=500, b_{1}=5, b_{2}=5 Derive an expression for the consumption function and graph it on your exam sheet.Show all work.

Fig: 1

Fig: 2

Fig: 3

Fig: 4

Fig: 5

Fig: 6

Fig: 7

Fig: 8

Fig: 9

Fig: 10

Fig: 11