Question

\text { Express } 4 \sin \theta+3 \cos \theta \text { in the form of } R \sin (\theta+\alpha) \text {, where } R>0 \text { and } 0^{\circ}<\alpha<90^{\circ} \text {. } ) Hence: \text { Solve the equation } 4 \sin \theta+3 \cos \theta+2=0 \text { giving all solutions for which } -180^{\circ}<\theta<180^{\circ} Find the values of the positive constants k and c such that -35 \leq k(4 \sin \theta+3 \cos \theta)+c \leq 45, \forall \theta

Fig: 1

Fig: 2

Fig: 3

Fig: 4

Fig: 5

Fig: 6