Search for question
Question

The mgf of the Poisson(X) distribution takes the form i t h=\exp \left\{\lambda\left(e^{t}-1\right)\right\} \quad t \in \mathbf{R} Also, if Y is a random variable with mgf my (t), and X = aY + b is a transformed version of Y,then the mgf for X takes the form m_{X}(t)=e^{b t_{m_{Y}}}(a t) \text { If } Y \sim P g \text { as } \operatorname{son}(\lambda) \text {, write down the mgf of the random variable } X=\frac{Y-\lambda}{\sqrt{\lambda}}=\frac{Y}{\sqrt{\lambda}}-\sqrt{\lambda} \text { Fin. the form of the mgf of } X \text { as } \lambda \rightarrow \infty \text {. }

Fig: 1

Fig: 2

Fig: 3

Fig: 4

Fig: 5

Fig: 6

Fig: 7