Search for question
Question

1. Introduction Projects for engineering students give an edge over the race of recruitment to work hard to ensure a good career. In spite of employment practices in recent times, students

are progressively taking up projects to pad up their skill-set. Engineering projects help students to learn and acquire practical knowledge. Despite of theory concept they acquire, various industries also need to know their capacity to complete projects using their specific initiatives. Thus, we recommend students to realize engineering projects in their four years of engineering and try to present as many white papers as possible. Students who give importance to their course projects are expected to learn how to: • Work in teams including multidisciplinary teams • Review various case studies of engineering applications based on the knowledge and skills acquired in the course work • Evaluate different alternatives using multiple performance indicators and realistic constraints Recognition of the need and identifying opportunities: Every project begins with recognition that needs improvement. These needs may be obvious or hidden to be revealed by investigation, surveys or research. • Definition of the real problem: It is a major task requires gathering information about the problem. The objective of the project is to analyze a case study and make an oral presentation to address their analysis and solution. Each group (3 members) will be assign a topic to analyze will perform a presentation to discuss the topic in front of other students. Topic: "Drones" "The drone is considered as a flying robot that can be used for professional and military-related applications or leisure. It has two main functions which are flying and navigation. Drones are powered by an energy source such as a battery or fuel. It is composed of many components like a GPS, camera, sensors, antennas, and flight controllers. Some drones require remote control and the intervention of humans. Other autonomous drones can be programmed such that they can carry out sophisticated missions with a high degree of accuracy without the intervention of humans." Use the following points to address the ethical dilemmas in your project topic: 1) Explain the reasons for which you can be a technological optimist/pessimist about the technology mentioned in the statement above. 2) In case this technology represents a controversial ethical dilemma, specify the case or situation of "Positive/Negative Paradigm". 3) Using the "Line Drawing" technique in solving ethical issues, select the features related to your decision. Discuss the outcomes of "Line Drawing". Present your work in the form of an oral presentation with Q&A session. Groups and topics distribution will be announced on Moodle. Presentations are to take place during the lecture time as follow:

Fig: 1


Most Viewed Questions Of Robotics

5.) A force of 500 N is required to open a process control valve. What area of diaphragm will be needed with a diaphragm actuator to open the valve with a control gauge pressure of 70 kPa? (20 pts)


2.) Consider a Pt resistance sensor that requires long leads to operate. To compensate for the changes in the resistance of long leads, the sensor can be connected to a Wheatstone bridge (as R1, see picture) using long leads (1,2,3) of same dimensions and material. They will all be subject to the same change in resistance (AR) due to temperature. If we consider lead #1 in series with R3 and lead #3 in series with R1, for R1 = R3 (and hence R2 = R4),starting from the general Wheatstone bridge output expression: \mathbf{V}_{\bullet}=\mathbf{V}_{\mathbf{A B}}-\mathbf{V}_{\mathbf{A D}}=\mathbf{V}_{\mathbf{2}}\left(\frac{\mathbf{R}_{\mathbf{1}}}{\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}}-\frac{\mathbf{R}_{\mathbf{3}}}{\mathbf{R}_{\mathbf{3}}+\mathbf{R}_{\mathbf{4}}}\right) show that the Wheatstone bridge cancels the effects of temperature on the long leads. In other words, show that V. = 0 when temperature varies and affects the resistance of the long leads.


3.) A diaphragm pressure gauge employs four strain gauges to monitor the displacement of the diaphragm. The four active gauges form the arms of a Wheatstone bridge, in the way shown in Fig. 3.23 b (see class notes too). The gauges have a gauge factor of 2.1 and resistance 120 Q. A differential pressure applied to the diaphragm results in two of the gauges on one side of the diaphragm being subject to a tensile strain of 1.0 x 10^-5 and the two on the other side a compressive strain of 1.0 x 10^-5 . The supply voltage for the bridge is 10 V. What will be the voltage output from the bridge? (20 pts) (Answer is 0.21 mV, but you need to show the work to get to this.)


A 220 V, three-phase, 6-pole, 60 Hz induction motor is running at a slip of 2.5%, and delivers5 kW to its load. The rotational losses are 500 W. Find O The speed of rotation magnetic field produced by the stator in rps; The speed of rotation magnetic field produced by the rotor in rps; The frequency of the voltage induced in the rotor; The slip speed in rps; The mechanical speed of the rotor in rpm; The load torque; 2) The converted power; The airgap power; ) The induced torque; The rotor copper losses.


2. This is a 3 DOF planar robot with 3 rotational joints. Derive the transformation matrix between the end-effector and the base of the robot coordinate systems. Assume the y and z axes orientations at every joint (y axis is given) and draw your assumptions in the free body diagram. Your assumptions will vary from your fellow students, if there is an intentional match both parties will receive zero marks! (a) DH (b) Three-link, nonplanar manipulator.


7.) A small permanent magnet motor has a torque constant kr=0.1 Nm/A and a back e.m.f.constant ke-2.50 V/krpm. The total internal resistance is R=15 2. Determine the torque for maximum power and the maximum rotational speed if the applied voltage is V=5V. (25pts)


In El 02.04, which of the follow is the time constant? \text { a. } \frac{R_{1}}{L}+\frac{R_{2}}{L} \text { b. } \frac{L}{R_{1}}+\frac{L}{R_{2}} \text { c. } \frac{1}{R_{1}}+\frac{1}{R_{2}} \text { d. } \frac{L R_{2}}{R_{1}}+\frac{L R_{1}}{R_{2}}


3. Consider frames {0}, {1} and {2} shown below. Assume that no rotation is allowed around Y axis and the maximum angle each axis can rotate at each time is 90 degrees. a. Find the homogeneous transformation matrices ⓇH, and¹H₂. b. Find H, using the relationship: "H₂="H,¹H₂. Z₁4 1m 1m Z₁ Z₂ Assume positive or negative rotations about the axes. You must write the transformation equations.


A 208V Y-connected synchronous motor is drawing 50 A at unity power factor from a 208Vpower system. The field current flowing under these conditions is 2.7 A. Its synchronous reactance is 1.6 N. Assume a linear open-circuit characteristic. Find V, and E, for these conditions.'A Find the torque angle ð. What is the static stability power limit under these conditions? O How much field current would be required to make the motor operate at 0.80 PF leading? What is the new torque angle in part (d)?


4. As shown in the following figure, it is an ABB IRB140 industrial robot. It has six DOF and all the major dimensions are given. The last three axes intersect with each other and have the common origin located at the centre of axis 5. Please derive the transformation matrix between the end-effector (6) and the base of the robot coordinates systems {0} using the homogenous transformation method. Assume the axes orientations at every joint and draw your assumptions in the free body diagram. Your assumptions will vary from your fellow students, if there is an intentional match both parties will receive zero marks! The link lengths are given in the diagram. You may use MATLAB for matrix multiplications. 670 Te 70 380 65 810 486 1092 712 352 151