the electron mass, and a, is the Bohr radius. Find the value of r for which the radial probability density is a maximum. ii. Verify that the wave function is correctly normalized. The following definite integral should be helpful: \int_{0}^{\infty} x^{n} e^{-\alpha x} \mathrm{~d} x=\frac{n !}{\alpha^{n+1}} \quad(n \geq 0 \text { and } \alpha>0)
Fig: 1
Fig: 2
Fig: 3
Fig: 4
Fig: 5
Fig: 6