2. Assume that P = (((p1^-P2) AP3) ⇒ P2). Write down the truth table for P. How many different interpretations make P true. Give the list of interpretations I under which P false. 3. A formula P is called satisfiable if there exists an interpretation I such that I(P) = 1. Which of the following formulas are satisfiable? Check using truth tables. \text { (a) }\left(\neg p_{1} \wedge p_{2}\right)

\text { (c) }\left(p_{1} \Leftrightarrow \neg p_{1}\right) \text { (d) }\left(p_{1} \wedge\left(\neg p_{2} \vee \neg p_{1}\right)\right)

Fig: 1

Fig: 2

Fig: 3

Fig: 4

Fig: 5

Fig: 6