Ab = b' – b and Ax = x' – x . Show that the inequality obtained in Theorem 2.11 is sharp. That is, find vectors b, Ab for which \frac{\|\Delta x\|_{2}}{\|x\|_{2}}=\kappa_{2}(A) \frac{\|\Delta b\|_{2}}{\|b\|_{2}} where k2(A) is the condition number of A under the 2-norm. (Hint: consider the eigenvectors of A^T A.)
Fig: 1
Fig: 2
Fig: 3