Question

5 6 7 8 9 The longitudinal equations of motion of an airplane may be approximated by the following differential equations: (a) Rewrite these equations in state-space form. (b) Fid the

eigenvalues of the uncontrolled system. (c) Determine a state feedback control law so that the augmented system has a damping ratio of 0.5 and an undamped natural frequency of 20 rad/s. w = -2w + 1798 – 278e Ö = -0.25w - 150 - 458 An airplane is found to have poor lateral/directional handling qualities. Use state feedback to provide stability augmentation. The lateral/directional equations of motion are as follows: = [ABT Ap Ar Lag] The desired lateral eigenvalues are: -0.05 -0.003 -0.98 0.21 [AB] -1 -0.75 Ap 16 Ar 0.3 0 -0.3 1 1 -0.15 0 0 0 Aroll = -1.5 s-1 Aspiral = 0.05 s-1 0 = Aroll = -0.35±j1.5 rad/s Assume the relative authority of the ailerons and rudder are: 9₁ = Q= [ΔΦ] R= Assume the states in problem 4 are unavailable for state feedback. Design a state observer to estimate the states. Assume the state observer eigenvalues are three times as fast as the desired closed-loop eigenvalues. i.e., A[state observer] =32[state feedback] C=[10] + Assume the states in problem 5 are unavailable for state feedback. Design a state observer to estimate the states. Assume the state observer eigenvalues are twice as fast as the desired closed-loop eigenvalues. i.e., A[state observer] =22[state feedback], where 21,2 = -10 +j17.3. A0max=+10° = ±0.175 rad Ademax = ±15° = ±0.26 rad 0 1.7 0.3 0 Design an optimal control law for problem 4. Use the following constraints and weighting functions: 1 A0max 1 Δδ?, 0 -0.2 [Ada] -0.6A8] [As a ] 0 max. 1.0 and 92 = 8/8a = 0.33.

Fig: 1