Consider the following communication system with constellation with 16 points in 16 dimensions
as given in Question 1.5 (second set) of Chapter 1 of the textbook. The modulation is with the
orthonormal waveforms given by (t)= Po(t-nT), for n=1,2,3,..., 15, and po(t) is the
squarcroot raised cosine pulse with T = 0.0001 and a=0.5. Find the following parameters of
the system:
• Energy per bit Es
• Rate R
• Power P,
Bandwidth W.
The second set is attached below./nA second signal set with M = 16 signals in 16 dimensions that can transmit 4 bits of information has the following signals:
So = A(+1, +1, +1, +1, +1, +1, +1, +1, +1, +1, +1, +1, +1, +1, +1, +1)
$₁ = A(+1,-1, +1, −1, +1, −1, +1, −1, +1, −1, +1, −1, +1,-1, +1, -1)
$₂ = A(+1, +1,-1, −1, +1, +1, −1, −1, +1, +1, − 1, −1, +1, +1,-1,-1)
$3 = A(+1,-1,-1, +1, +1, −1, −1, +1, +1, −1, −1, +1, +1,-1,-1, +1)
$4 = A(+1, +1, +1, +1, −1, −1, −1, −1, +1, +1, +1, +1, −1, −1, −1, −1)
$5 = A(+1,-1, +1, −1, −1, +1, −1, +1, +1, −1, +1, −1, −1, +1, −1, +1)
S6 = A(+1, +1,-1, −1, −1, −1, +1, +1, +1, +1, −1, −1, −1, −1, +1, +1)
$7 = A(+1,-1,-1, +1, −1, +1, +1, −1, +1, −1, −1, +1, −1, +1, +1, −1)
$g = A(+1, +1, +1, +1, +1, +1, +1, +1, −1, −1, −1, -1,-1,-1,-1,-1)
$9 = A(+1,-1, +1, −1, +1, −1, +1, −1, −1, +1, −1, +1,-1, +1,-1, +1)
S10 = A(+1, +1,−1, −1, +1, +1, −1, −1, −1, −1, +1, +1, −1, −1, +1, +1)
S11 = A(+1,-1, −1, +1, +1, −1, −1, +1, −1, +1, +1, −1, −1, +1, +1, -1)
$12 = A(+1, +1, +1, +1, −1, −1, −1, −1, −1, −1, −1, −1, +1, +1, +1, +1)
S13 = A(+1,-1, +1, −1, −1, +1, −1, +1, −1, +1, −1, +1, +1, −1, +1, -1)
S14 = A(+1, +1,−1, −1, −1, −1, +1, +1, −1, −1, +1, +1, +1, +1, −1, −1)
S15 = A(+1,-1,-1, +1, −1, +1, +1, −1, −1, +1, +1, −1, +1, −1, −1, +1)
Fig: 1
Fig: 2