Search for question
Question

Consider \begin{array}{l} f(x)=\left\{\begin{array}{ll} 3 & x \text { rational } \\ 1 & x \text { irrational } \end{array}, g(x)=\frac{2 x-1}{2 x-1}, h(x)=\cos (x)+e^{x},\right. \text { and } \\ j(x)=\left\{\begin{array}{ll}

x^{2} & x>0 \\ x+1 & x \leq 0 \end{array}\right. \end{array} Which of these functions are integrable on [-2, 2]? All are integrable [-2, 2]. None of these functions are integrable [-2, 2]. All are integrable [-2, 2] except for f(x). Only h(x) is integrable [-2, 2]. Only g(x) and h(x) are integrable [-2, 2].

Fig: 1

Fig: 2

Fig: 3

Fig: 4

Fig: 5

Fig: 6

Fig: 7

Fig: 8