Question

Mid-Ordinate Rule \text { Area }=w\left(h_{m 1}+h_{m 2}+h_{m 3}+h_{m 4} \ldots+h_{m n}\right) W = width hm = Height of the mid ordinate Trapeziodal Rule \text { Area }=w\left(\frac{h_{1}+h_{n}}{2}+h_{2}+h_{3} \ldots+h_{n-1}\right) hHeight

of the ordinate w = width Simpsons Rule: For an even number of strips: \text { Area }=\frac{w}{3}\left(\text { (1st + last ordinate) }+\left(4 \times \sum \text { even ordinates }\right)+\left(2 \times \sum \text { odd ordinates }\right)\right) w = width Length of an arc = 2nR B/360; \text { Length of an arc }=2 \pi \mathrm{R} \beta / 360 ; \text { Long chords }=2 R \sin (\theta) \text { Tangent lengths = R tan ( } \beta / 2 \text { ); } \text { Tangential angles ( } \theta \text { ) }=(c / R) \times 90 / \pi Where R is the circular curve radius, B is the deviation angle and c is the chord length.

Question image 1Question image 2Question image 3Question image 4Question image 5Question image 6Question image 7Question image 8Question image 9Question image 10Question image 11Question image 12Question image 13Question image 14Question image 15Question image 16Question image 17Question image 18