Question

Problem 4: The time-dependent equations of motion for the mass-spring system illustrated below are: \begin{array}{l} \ddot{x}_{1}+\frac{\left(k_{1}+k_{2}\right)}{m_{1}} x_{1}-\frac{k_{2}}{m_{1}} x_{2}=0 \\ \ddot{x}_{2}-\frac{k_{2}}{m_{2}} x_{1}+\frac{\left(k_{2}+k_{3}\right)}{m_{2}} x_{2}-\frac{k_{3}}{m_{2}} x_{3}=0 \\ \ddot{x}_{3}-\frac{k_{3}}{m_{3}} x_{2}+\frac{\left(k_{3}+k_{4}\right)}{m_{3}} x_{3}=0 \end{array} Assuming solutions

of the form x; = X; sin(@t), transform the above system into an eigenvalue problem; then, find the three natural frequencies (w1, w2, and w3) and the three eigenvectors of the system using the values \begin{array}{l} \mathbf{k}_{\mathbf{1}}=\mathbf{k}_{\mathbf{4}}=15 \mathbf{N} \mathbf{m} \\ \mathbf{k}_{\mathbf{2}}=\mathbf{k}_{\mathbf{3}}=\mathbf{3 5} \mathbf{N}_{\mathbf{m}} \\ \mathbf{m}_{\mathbf{1}}=\mathbf{m}_{\mathbf{2}}=\mathbf{m}_{\mathbf{3}}=\mathbf{m}_{\mathbf{4}}=\mathbf{2} \mathbf{k g} \end{array} You may use the "eig" function in MATLAB. Explain what the eigenvectors tell you about the directions the three masses will move when oscillating at the three different natural frequencies.

Fig: 1

Fig: 2

Fig: 3

Fig: 4

Fig: 5

Fig: 6

Fig: 7