Search for question
Question

\text { 4. Let } C([-3,3]) \text { be the vector space of continuous functions } f:[-3,3] \rightarrow \mathbb{R} \text { with the norm of uniform convergence }\|f\|_{\infty}:=\max _{x \in[-3,3]}|f(x)|

\text {. } \text { (i) Consider the linear mapping } L: C([-3,3]) \rightarrow \mathbb{R} \text {, } L f:=\int_{-3}^{3} x f(x) d x \text { Prove that the mapping } L: C([-3,3]) \rightarrow \mathbb{R} \text { is continuous. } \text { (ii) Consider the mapping } F: C([-3,3]) \rightarrow \mathbb{R} \text {, } F(f):=\int_{-3}^{3}|x \| f(x)| d x Why you can not use the same strategy as in part (i) to prove that F is[2 Marks]continuous?

Fig: 1

Fig: 2

Fig: 3

Fig: 4

Fig: 5

Fig: 6

Fig: 7

Fig: 8