Search for question
Question

\text { Set up the triple integral } \iiint_{Q} f(x, y, z) d V \text { in cylindrical coordinates. } Q \text { is the region above } z=\sqrt{x^{2}+y^{2}} \text { and below } z=\sqrt{1352-x^{2}-y^{2}} . \int_{0}^{2 \pi} \int_{0}^{26} \int_{r}^{\sqrt{1352-r^{2}}} f(r \cos (\theta), r \sin (\theta), z) d z d r d \theta \int_{0}^{2 \pi} \int_{0}^{26} \int_{r}^{\sqrt{1352-r^{2}}} f(r \cos (\theta), r \sin (\theta), z) \cdot r d z d r d \theta \int_{0}^{2 \pi} \int_{0}^{676} \int_{r}^{\sqrt{1352-r^{2}}} f(r \cos (\theta), r \sin (\theta), z) d z d r d \theta \int_{0}^{2 \pi} \int_{0}^{676} \int_{\nu}^{\sqrt{1352-r^{2}}} f(r \cos (\theta), r \sin (\theta), z) \cdot r d z d r d \theta

Fig: 1

Fig: 2

Fig: 3

Fig: 4

Fig: 5

Fig: 6