f}{\mathrm{~d} x}=\frac{1}{\left(2 e^{\sqrt{x}}+3\right) \sqrt{x}} \text { c) None of the answers given here. } \text { d) } \frac{\mathrm{d} f}{\mathrm{~d} x}=\frac{1}{\ln 4\left(2 e^{\sqrt{x}}+3\right) \sqrt{x}} \frac{\mathrm{d} f}{\mathrm{~d} x}=\frac{1}{\ln 2\left(2 e^{\sqrt{x}}+3\right) \sqrt{x}} \text { g) } \frac{\mathrm{d} f}{\mathrm{~d} x}=\frac{\sqrt{x}}{\ln 4\left(2 e^{\sqrt{x}}+3\right)}
Fig: 1
Fig: 2
Fig: 3
Fig: 4
Fig: 5
Fig: 6
Fig: 7
Fig: 8
Fig: 9