Question

\text { Consider the } \mathrm{X} \text {-force equilibriu } \mathrm{m}, \sum \mathrm{F}_{\mathrm{x}}=0 \text {; } Cancelling out equal terms in opposite faces \frac{\partial \sigma_{x}}{\partial x} d x d y

d z+\frac{\partial \tau_{y x}}{\partial y} d x d y d z+\frac{\partial \tau_{z x}}{\partial z} d x d y d z+X d x d y d z=0 So we get the x- equilibrium equation \frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{y x}}{\partial y}+\frac{\partial \tau_{z x}}{\partial z}+X=0 \frac{\partial \tau_{y x}}{\partial x}+\frac{\partial \sigma_{y}}{\partial y}+\frac{\partial \tau_{y z}}{\partial z}+Y=0 \frac{\partial \tau_{z x}}{\partial x}+\frac{\partial \tau_{z y}}{\partial y}+\frac{\partial \sigma_{z}}{\partial z}+Z=0 in short, the equilibrium equations in tensor notation Ou, +X, = 0 (i, j = x, y, z) Take moment quilibrium about an axis through the center and parallel to z - axis \tau_{x y} d y d z \frac{d x}{2}+\left(\tau_{x y}+\frac{\partial \tau_{x y}}{\partial x} d x\right) d y d z \frac{d x}{2}-\tau_{y x} d x d z \frac{d y}{2}-\left(\tau_{y x}+\frac{\partial \tau_{y x}}{\partial y} d y\right) d x d z \frac{d y}{2}=0 \tau_{x y} d x d y d z-\tau_{y x} d x d y d z=0 \therefore \tau_{x y}=\tau_{y x} \tau_{y z}=\tau_{z y} \tau_{z x}=\tau_{x z}

Question image 1Question image 2Question image 3Question image 4Question image 5Question image 6Question image 7Question image 8Question image 9Question image 10Question image 11Question image 12Question image 13Question image 14Question image 15Question image 16Question image 17