Search for question
Question

Consider the following system \dot{\mathbf{x}}(t)=\left[\begin{array}{rrr}

0 & 0 & 0 \\

0 & -2 & 1 \\

0 & 0 & -2

\end{array}\right] \mathbf{x}(t)+\left[\begin{array}{l}

0 \\

1 \\

1

\end{array}\right] u(t), \quad y(t)=\left[\begin{array}{lll}

1 & 1 & 2

\end{array}\right] \mathbf{x}(t) Is it asymptotically stable? Is it BIBO stable?

Fig: 1

Fig: 2

Fig: 3