Question

Consider the following system \dot{\mathbf{x}}(t)=\left[\begin{array}{rrr} 0 & 0 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -2 \end{array}\right] \mathbf{x}(t)+\left[\begin{array}{l} 0 \\ 1 \\ 1 \end{array}\right] u(t), \quad y(t)=\left[\begin{array}{lll} 1 & 1 & 2 \end{array}\right] \mathbf{x}(t) Is it asymptotically stable? Is it BIBO stable?

Fig: 1

Fig: 2

Fig: 3