Question Consider the following system \dot{\mathbf{x}}(t)=\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & -2 & 1 \\
0 & 0 & -2
\end{array}\right] \mathbf{x}(t)+\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] u(t), \quad y(t)=\left[\begin{array}{lll}
1 & 1 & 2
\end{array}\right] \mathbf{x}(t) Is it asymptotically stable? Is it BIBO stable?