speed w, this means 0 = wt. a) Show that if unpolarized light is incident on the left disk with an intensity of Imax, the intensity of the beam emerging from the right disk is: I=\frac{1}{16} I_{\max }(1-\operatorname{Cos}(4 \omega t)) You will find the following trigonometric identities helpful: \operatorname{Cos}^{2}(\theta)=\frac{1}{2}(1+\operatorname{Cos}(2 \theta)) \quad \operatorname{Sin}^{2}(\theta)=\frac{1}{2}(1-\operatorname{Cos}(2 \theta)) \quad \operatorname{Cos}^{2}\left(90^{\circ}-\theta\right)=\operatorname{Sin}^{2}(\theta) ) Sketch a plot of the emerging intensity as a function of time using w = 0.5 Fad, and Imax = 16m2. Compare the frequency the disk rotates and the frequency of oscillation of you intensity plot. Explain how/ why one is 4x the other.
Fig: 1
Fig: 2
Fig: 3
Fig: 4
Fig: 5
Fig: 6
Fig: 7
Fig: 8