https://publicpagestutorbin.blob.core.windows.net/%24web/%24web/assets/Vector_3_18e566da35.png

Transport Phenomenon Homework Help | Transport Phenomenon Assignment Help

Excel in Exams with Expert Transport Phenomenon Homework Help Tutors.

https://publicpagestutorbin.blob.core.windows.net/%24web/%24web/assets/Frame_1_7db546ad42.png

Trusted by 1.1 M+ Happy Students

Place An Orderand save time
man
phone
  • United States+1
  • United Kingdom+44
  • Afghanistan (‫افغانستان‬‎)+93
  • Albania (Shqipëri)+355
  • Algeria (‫الجزائر‬‎)+213
  • American Samoa+1
  • Andorra+376
  • Angola+244
  • Anguilla+1
  • Antigua and Barbuda+1
  • Argentina+54
  • Armenia (Հայաստան)+374
  • Aruba+297
  • Ascension Island+247
  • Australia+61
  • Austria (Österreich)+43
  • Azerbaijan (Azərbaycan)+994
  • Bahamas+1
  • Bahrain (‫البحرين‬‎)+973
  • Barbados+1
  • Belarus (Беларусь)+375
  • Belgium (België)+32
  • Belize+501
  • Benin (Bénin)+229
  • Bermuda+1
  • Bhutan (འབྲུག)+975
  • Bolivia+591
  • Bosnia and Herzegovina (Босна и Херцеговина)+387
  • Botswana+267
  • Brazil (Brasil)+55
  • British Indian Ocean Territory+246
  • British Virgin Islands+1
  • Brunei+673
  • Bulgaria (България)+359
  • Burkina Faso+226
  • Burundi (Uburundi)+257
  • Cambodia (កម្ពុជា)+855
  • Cameroon (Cameroun)+237
  • Canada+1
  • Cape Verde (Kabu Verdi)+238
  • Caribbean Netherlands+599
  • Cayman Islands+1
  • Central African Republic (République centrafricaine)+236
  • Chad (Tchad)+235
  • Chile+56
  • China (中国)+86
  • Christmas Island+61
  • Cocos (Keeling) Islands+61
  • Colombia+57
  • Comoros (‫جزر القمر‬‎)+269
  • Congo (DRC) (Jamhuri ya Kidemokrasia ya Kongo)+243
  • Congo (Republic) (Congo-Brazzaville)+242
  • Cook Islands+682
  • Costa Rica+506
  • Côte d’Ivoire+225
  • Croatia (Hrvatska)+385
  • Cuba+53
  • Curaçao+599
  • Cyprus (Κύπρος)+357
  • Czech Republic (Česká republika)+420
  • Denmark (Danmark)+45
  • Djibouti+253
  • Dominica+1
  • Dominican Republic (República Dominicana)+1
  • Ecuador+593
  • Egypt (‫مصر‬‎)+20
  • El Salvador+503
  • Equatorial Guinea (Guinea Ecuatorial)+240
  • Eritrea+291
  • Estonia (Eesti)+372
  • Eswatini+268
  • Ethiopia+251
  • Falkland Islands (Islas Malvinas)+500
  • Faroe Islands (Føroyar)+298
  • Fiji+679
  • Finland (Suomi)+358
  • France+33
  • French Guiana (Guyane française)+594
  • French Polynesia (Polynésie française)+689
  • Gabon+241
  • Gambia+220
  • Georgia (საქართველო)+995
  • Germany (Deutschland)+49
  • Ghana (Gaana)+233
  • Gibraltar+350
  • Greece (Ελλάδα)+30
  • Greenland (Kalaallit Nunaat)+299
  • Grenada+1
  • Guadeloupe+590
  • Guam+1
  • Guatemala+502
  • Guernsey+44
  • Guinea (Guinée)+224
  • Guinea-Bissau (Guiné Bissau)+245
  • Guyana+592
  • Haiti+509
  • Honduras+504
  • Hong Kong (香港)+852
  • Hungary (Magyarország)+36
  • Iceland (Ísland)+354
  • India (भारत)+91
  • Indonesia+62
  • Iran (‫ایران‬‎)+98
  • Iraq (‫العراق‬‎)+964
  • Ireland+353
  • Isle of Man+44
  • Israel (‫ישראל‬‎)+972
  • Italy (Italia)+39
  • Jamaica+1
  • Japan (日本)+81
  • Jersey+44
  • Jordan (‫الأردن‬‎)+962
  • Kazakhstan (Казахстан)+7
  • Kenya+254
  • Kiribati+686
  • Kosovo+383
  • Kuwait (‫الكويت‬‎)+965
  • Kyrgyzstan (Кыргызстан)+996
  • Laos (ລາວ)+856
  • Latvia (Latvija)+371
  • Lebanon (‫لبنان‬‎)+961
  • Lesotho+266
  • Liberia+231
  • Libya (‫ليبيا‬‎)+218
  • Liechtenstein+423
  • Lithuania (Lietuva)+370
  • Luxembourg+352
  • Macau (澳門)+853
  • North Macedonia (Македонија)+389
  • Madagascar (Madagasikara)+261
  • Malawi+265
  • Malaysia+60
  • Maldives+960
  • Mali+223
  • Malta+356
  • Marshall Islands+692
  • Martinique+596
  • Mauritania (‫موريتانيا‬‎)+222
  • Mauritius (Moris)+230
  • Mayotte+262
  • Mexico (México)+52
  • Micronesia+691
  • Moldova (Republica Moldova)+373
  • Monaco+377
  • Mongolia (Монгол)+976
  • Montenegro (Crna Gora)+382
  • Montserrat+1
  • Morocco (‫المغرب‬‎)+212
  • Mozambique (Moçambique)+258
  • Myanmar (Burma) (မြန်မာ)+95
  • Namibia (Namibië)+264
  • Nauru+674
  • Nepal (नेपाल)+977
  • Netherlands (Nederland)+31
  • New Caledonia (Nouvelle-Calédonie)+687
  • New Zealand+64
  • Nicaragua+505
  • Niger (Nijar)+227
  • Nigeria+234
  • Niue+683
  • Norfolk Island+672
  • North Korea (조선 민주주의 인민 공화국)+850
  • Northern Mariana Islands+1
  • Norway (Norge)+47
  • Oman (‫عُمان‬‎)+968
  • Palau+680
  • Palestine (‫فلسطين‬‎)+970
  • Panama (Panamá)+507
  • Papua New Guinea+675
  • Paraguay+595
  • Peru (Perú)+51
  • Philippines+63
  • Poland (Polska)+48
  • Portugal+351
  • Puerto Rico+1
  • Qatar (‫قطر‬‎)+974
  • Réunion (La Réunion)+262
  • Romania (România)+40
  • Russia (Россия)+7
  • Rwanda+250
  • Saint Barthélemy+590
  • Saint Helena+290
  • Saint Kitts and Nevis+1
  • Saint Lucia+1
  • Saint Martin (Saint-Martin (partie française))+590
  • Saint Pierre and Miquelon (Saint-Pierre-et-Miquelon)+508
  • Saint Vincent and the Grenadines+1
  • Samoa+685
  • San Marino+378
  • São Tomé and Príncipe (São Tomé e Príncipe)+239
  • Saudi Arabia (‫المملكة العربية السعودية‬‎)+966
  • Senegal (Sénégal)+221
  • Serbia (Србија)+381
  • Seychelles+248
  • Sierra Leone+232
  • Singapore+65
  • Sint Maarten+1
  • Slovakia (Slovensko)+421
  • Slovenia (Slovenija)+386
  • Solomon Islands+677
  • Somalia (Soomaaliya)+252
  • South Africa+27
  • South Korea (대한민국)+82
  • South Sudan (‫جنوب السودان‬‎)+211
  • Spain (España)+34
  • Sri Lanka (ශ්‍රී ලංකාව)+94
  • Sudan (‫السودان‬‎)+249
  • Suriname+597
  • Svalbard and Jan Mayen+47
  • Sweden (Sverige)+46
  • Switzerland (Schweiz)+41
  • Syria (‫سوريا‬‎)+963
  • Taiwan (台灣)+886
  • Tajikistan+992
  • Tanzania+255
  • Thailand (ไทย)+66
  • Timor-Leste+670
  • Togo+228
  • Tokelau+690
  • Tonga+676
  • Trinidad and Tobago+1
  • Tunisia (‫تونس‬‎)+216
  • Turkey (Türkiye)+90
  • Turkmenistan+993
  • Turks and Caicos Islands+1
  • Tuvalu+688
  • U.S. Virgin Islands+1
  • Uganda+256
  • Ukraine (Україна)+380
  • United Arab Emirates (‫الإمارات العربية المتحدة‬‎)+971
  • United Kingdom+44
  • United States+1
  • Uruguay+598
  • Uzbekistan (Oʻzbekiston)+998
  • Vanuatu+678
  • Vatican City (Città del Vaticano)+39
  • Venezuela+58
  • Vietnam (Việt Nam)+84
  • Wallis and Futuna (Wallis-et-Futuna)+681
  • Western Sahara (‫الصحراء الغربية‬‎)+212
  • Yemen (‫اليمن‬‎)+967
  • Zambia+260
  • Zimbabwe+263
  • Åland Islands+358
*Get instant homework help from top tutors—just a WhatsApp message away. 24/7 support for all your academic needs!

Master Transport Phenomena with Expert Online Tutoring

Unlock the Complex World of Transport Phenomena

Transport Phenomena, a foundational subject in engineering, explores the principles of momentum, energy, and mass transfer. Understanding these concepts is crucial for students aspiring to excel in various engineering disciplines. Recognizing the challenges students face, our dedicated platform offers comprehensive online tutoring and homework help, available 24/7, to support college students in mastering this intricate subject.

Tailored Support for All Your Needs

Diverse Tutoring Services

Our team comprises tutors specialized in all aspects of Transport Phenomena, ensuring that you receive well-rounded support. Whether you need help with specific homework assignments, wish to grasp broader conceptual ideas, or require assistance in simplifying complex topics, our tutors are equipped to provide the guidance you need.

Personalized Learning Experience

We understand that each student has a unique style of learning. Our online Transport Phenomena tutors customize their teaching methods to align with your personal learning preferences, ensuring that the instruction you receive is as effective as possible.

Enhance Your Knowledge and Confidence

Working with our highly qualified tutors not only deepens your understanding of Transport Phenomena but also boosts your confidence in the classroom. This newfound assurance enables you to apply your knowledge in future courses, facilitating a smooth and successful educational journey.

Convenient and Accessible Tutoring

Our fully remote tutoring service makes seeking help straightforward and hassle-free. Avoid the struggle of finding a reliable local tutor; our Transport Phenomena experts are just a call away, ready to assist you whenever you need them, without any scheduling conflicts.

Why Choose Us for Transport Phenomena Tutoring?

  • 24/7 Availability: Our tutoring centers are open around the clock, ready to offer the help you need, whenever you need it.
  • Expert Tutors: Gain access to tutors with extensive expertise in Transport Phenomena, many of whom hold advanced degrees and positions in academia and the industry.
  • Tailored Instruction: Receive tutoring that's customized to fit your specific academic needs and learning style.
  • Boosted Confidence: Strengthen your confidence level in Transport Phenomena and beyond, empowering you to excel in your current and future coursework.

Elevate Your Understanding of Transport Phenomena

Don't let the complexities of Transport Phenomena hold you back. With our expert tutoring and homework help, achieving a comprehensive understanding of this crucial engineering subject is within reach. Sign up today for personalized tutoring sessions or request homework assistance to take the first step towards mastering Transport Phenomena and advancing your engineering education.

Recently Asked Transport Phenomenon Questions

Expert help when you need it
  • Q1: Problem 2 [10 points] Consider a specially designed capillary tube, sealed at both ends, with variable diameter, as shown in the illustration below. This capillary is used for various experiments on the ISS (International Space Station). As this capillary floats motionless in the ISS cabin, will the air bubble inside the capillary move? See Answer
  • Q2: 5. Transient behavior of a stirred tank-E. The well-stirred tank of volume V = 2 m3 shown in Fig. P2.5 is initially filled with brine, in which the initial concentration of sodium chloride at t = 0 is co = 1 kg/m³. Subsequently, a flow rate of Q =0.01 m /s of pure water is fed steadily to the tank, and the same flow rate of brine leaves the tank through a drain. Derive an expression for the subsequent concentration of sodium chloride c in terms of co, t, Q, and V. Make a sketch of c versus t and label the main features. How long (minutes and seconds)will it take for the concentration of sodium chloride to fall to a final value of Cf = 0.0001 kg/m³? See Answer
  • Q3:1. Rouse' Law and the SPM profile equation (40pts): The Rouse' Law approach to suspended particulate matter (SPM) conservation assumes that SPM concentration is conserved locally, in each vertical column of water; i.e., SPM concentration may move up and down in the water col- umn (depending on flow conditions), but horizontal transport of SPM has no effect on the con- centration profile, even though individual particles will travel more or less with the flow and the concentration profile (once known) is used to calculate horizontal transport. This Rouse' Law ap- proach is the basis of most practical calculations of suspended load, except in some 3-D numeri- cal models, where the total derivative (local time variations plus horizontal advection) is consid- ered, also. The specific form of SPM conservation used in Rouse' law is (after Reynold's averag- ing and simplification using physical reasoning): a ac =W, DC + 2 (KBC) Ĉz cz 0=W₁ Here, C is SPM concentration, and Kc is a vertical diffusivity for SPM. (a) Derive the law for SPM conservation (15 pts): ac ac ac ôt ax (2) where no Reynolds' averaging has been done so far. There is a summary of the derivation in the first file on the equations of motion, after the discus- sion of mass conservation. You can follow the approach mentioned there, by considering the flux of suspended sediment. That is, define SPM as a volume concentration C (e.g., μ-liter SPM/liter water), and then define fluxes in and out of a control volume dVol = dx dy dz. Note that the flux you are defining is Cxpxvelocity and you are looking at the time-change of Cxp in volume dVol, so you are going to use a control volume approach to define: dxdydz = 2(Cp) dvol +U. +V ++ (w-ws) a(pCV) a(Cp) ôt ôt dz (3) To do this, you will have to assume that the sediment velocity vector Us = {u, v, w - Ws), where (u, v, w) is the water velocity. The SPM settling velocity Ws is NOT a function of {x,y,z,t) and does not have turbulent fluctuations - it is a constant. (b) Reynold's average (2) (which is your result from (a)) to get (10 pts): ac ac ac +u. +V +(w-ws) ac dz (1) = ac côz (4) (c) Now reduce the global expression of SPM conservation in (4) to the form needed for Rouse' Law (1), specifying each necessary assumption (I've already told you most of what you need to know.); 10 pts d) Explain why horizontal mixing is neglected in (4); 5 pts. 1See Answer
  • Q4:3) A problem on SPM profiles (40 pts): Consider a flow 12m deep with U- of 0.05 m/s and zo = 10 mm and Zref = 0.1 m (Zref is the location where the reference value of C is measured). A deep, rapidly flowing river like this would like have a continuum of sediment sizes that would have to be very simply "binned" for any sediment transport calculation. We will consider only three "size classes" (as they are called): silt d₁ = 25 µm, fine sand d₂ = 250 µm, and coarse sand d3 = 1000 μm (assume Corey shape factor =0.7), and information of the sort that one might be able obtain in a real system. (a) Find Ws, Ws/U., and the Rouse number P for each size class; 10 pts. (b) Assume that a log-layer velocity profile is adequate to describe the flow. What is that veloc- ity profile? 5 pts (c) What is the corresponding parabolic eddy diffusivity profile? 5 pts (d) Using the Rouse solution for the SPM profile in class notes (the solution applicable in a log- boundary layer), calculate for each size class the ratios: (Clz=10m/C|z=zref), (C|z= 1m/C|z=zref), and (C|z=0.5m/C|z=zref). If Clz- zref is the same for each of the three size classes, where do you expect the bulk of the sediment transport to occur for each size class? You don't need to know an actual value of Cz=zref to answer the question. But when working with observations, you want to have data (z= zref) as close to the bed as possible, to get good results. Otherwise, you'll miss the larger sizes; 20 pts 2See Answer
  • Q5:CHE 3333 Introduction to Transport Phenomena Fall 2023 Problem 1. (3 pts) A viscous film drains uniformly down the side of a vertical rod of radius R. You may assume that the flow is fully developed and that the liquid forms a film with a constant thickness of h. You may also neglect the shear resistance due to the atmosphere. Use the shell balance approach to determine the velocity distribution in the film.See Answer
  • Q6:Problem 2. (3 pts) Benzene, which is an incompressible Newtonian fluid, flows steadily and continuously at 100 °F through a 3,000 ft horizontal, 4" schedule 40 pipe. The pressure drop across the pipe under these conditions is 2 psi. You may assume fully developed, laminar flow. Use the shell balance approach to find the volumetric flow rate through the pipe in gallons per minute (gpm).See Answer
  • Q7:1. An infinitely long cylinder with a diameter of 10 cm is filled with a fluid. At x=0 and at t=0, a delta function mass input of 2.0 gm CO₂. Assume 25°C. Write governing equation, initial and boundary conditions and solution. Find the time to reach a concentration of 2 ppm at x=100 cm for (i) Molecular diffusion in air [2 pts]. Use D=0.164 cm²/s. [Be careful about converting mass/volume to mass/mass for air since 1 mg/l is not equal to 1 ppm in air! You will need the density of air: 1180 g/m³] (ii) Molecular diffusion in water [2 pts]. Use D=2E-5 cm²/s. (iii) Turbulent diffusion in water [2 pts]. As we will derive later, substitute a value of 1 cm²/s for D as a reflection of uniformly generated (isotropic and homogeneous) turbulence in water.See Answer
  • Q8:3. Compare the result of problem 1 with the following: The cylinder has the mass input of 2.0 gm CO₂ added over a width of 5 cm (not at a point). Compare the results of this solution to Problem 1 for part (iii) for a D=1 cm²/s. First you must derive the solution using superposition (see similar derivation in the lecture notes). [5 pts]See Answer
  • Q9:1. Molecular diffusion in a bounded medium [12 pts] An instantaneous point of strength M is located at the position (0, 0, h) above a horizontal plane (z = 0) that forms a reflective boundary. With a uniform advective velocity field (U, 0, 0) and molecular diffusivity D, (1) determine the solution for the resulting concentration distribution, and (2) by differentiation normal to the boundary show that the normal diffusive flux is indeed zero. [2 pts each] Assuming an additional horizontal boundary, that behaves as a perfect absorber for the substance under consideration, is located at z = H (where H>h), determine the solution. [3 pts] Assume a 1-D governing equation for vertical diffusion in a vertical tube: a²c Әс at = D azz assuming homogeneity in the x-y plane. Assume the tube has a length of 100 cm and there is an injection of mass in the middle of the tube (z=50 cm) of 10 g. Assume D is 0.001 m²/s and diameter of the tube is 10 cm. Perform 2 simulations with 2 different boundary conditions at z=0 cm and z=100 cm: (1) a concentration of zero, and (2) a no flux boundary condition. Use the numerical approach with a grid spacing of 5 cm to solve for the vertical distribution of mass after 60 s (i.e., plot C vs z at t-60 s) for (1) and (2). Choose your time step based on this criterion: At < 0.44² [5 pts] a. b. C.See Answer
  • Q10:1. Molecular diffusion in a bounded medium [12 pts] An instantaneous point of strength M is located at the position (0, 0, h) above a horizontal plane (z = 0) that forms a reflective boundary. With a uniform advective velocity field (U, 0, 0) and molecular diffusivity D, (1) determine the solution for the resulting concentration distribution, and (2) by differentiation normal to the boundary show that the normal diffusive flux is indeed zero. [2 pts each] Assuming an additional horizontal boundary, that behaves as a perfect absorber for the substance under consideration, is located at z = H (where H>h), determine the solution. [3 pts] Assume a 1-D governing equation for vertical diffusion in a vertical tube: дс a²c at = D assuming homogeneity in the x-y plane. Assume the tube has a əz² length of 100 cm and there is an injection of mass in the middle of the tube (z=50 cm) of 10 g. Assume D is 0.001 m²/s and diameter of the tube is 10 cm. Perform 2 simulations with 2 different boundary conditions at z=0 cm and z=100 cm: (1) a concentration of zero, and (2) a no flux boundary condition. Use the numerical approach with a grid spacing of 5 cm to solve for the vertical distribution of mass after 60 s (i.e., plot C vs z at t=60 s) for (1) and (2). Choose your time step based on this criterion: At < 0.44² [5 pts] a. b.See Answer
  • Q11:Problem 4: Numerical Methods (Shooting Method) (25 Points) Working for a company called Fin Design Inc., you are asked to design a cylindrical fin to increase the heat transfer rate from a pipe as shown in the figure below. Temperature of ambient air = Ta The relevant values in the figure are: R₁ = 0.8 in R₁= 1.0 in T,= 100 F Tv = 300 F R₁ Temperature T = T at r = Ro/nThe equation governing the temperature variation within the fin is given by: d²T 1 dr -4T=0 dr² r dr You may assume the tip of the fin is at the temperature of the surrounding air. Your goal is to determine the rate of heat transfer through this fin but for this you need to obtain the temperature distribution within the fin first. a. Dividing your fin into 4 equally spaced segments, use the shooting method to get the temperature profile within the fin. Fill in your values in the table below (if you used Goal seek/solver and obtained the correct value of w=dT/dr in your first try...that is OK!) (10 points) Estimate of slope (w = dT/dx) r (inches) 0.8 0.85 0.9 0.95 1.0 Fill in 1 estimate of "(w=dT/dr)" here T(r) - 1" estimate Fill in 2nd estimate of "(w=dT/dr)" here T(r) -2nd estimate Fill in 3rd estimate of "(w=dT/dr)" here T(r)-3rd estimate Fill in 4th estimate of "(w=dT/dr)" here T(r)-4th estimate b. Show a sample step-by-step calculation for any one of the columns that you report in the tables above (i.e., choosing any "r" location and any T (r) of your choosing, show how you used the shooting method to predict the T at the next spatial location - i.e., the number in the row below it). Please show the calculations clearly to enable me to replicate your results (10 points) Temperature at the first spatial location: Spatial-step size: Calculation of the slopes (dT/dr and dw/dr) at that spatial location:/n(Please make space here) Temperature at the next spatial location: (Please make space here) c. How did you ensure (or why do you feel) that you have arrived at the numerically correct answer? (5 points)See Answer
  • Q12:Problem 1 Water at 20°C is flowing down a vertical wall with Re = 10. Calculate (a) the flow rate, in gallons per hour per foot of wall length, and (b) the film thickness in inches.See Answer
  • Q13:Problem 2 The "Flow of Two Adjacent Immiscible Fluids" was solved in Class. However, we stopped short of actually evaluating the four integration constants. Using the four boundary conditions shown in the lecture slides, evaluate the four constants and show that the momentum flux and velocity profiles reduce to the answer shown on the slides.See Answer
  • Q14:N Q4 (1.5 points) From the figure on the left, a water jet (with diameter d = 0.25 m, volumetric flow rate Q = 0.15 m³/s) hits a flat plate causing it to move along the direction of water jet under a constant speed v = 0.6 m/s. Please determine the force and the power the water jet exerted on the plate.See Answer
  • Q15:Q5 (1.5 points) Please explain why the flow rate of where the river can be estimated from the "head" (see figure on the right) when using Weir method. Dept of water passing overcrestSee Answer
  • Q16:Problem 1 A part of lubrication system consists of two circular disks between which a lubricant lows radially.See Answer
  • Q17:Problem 3 (15 Points)A catalyst pellet has a radius R and a thermal conductivity k. Because of the chemical reaction occurring within theSee Answer
  • Q18:Species Accumulation and Transport within an Interface Accumulation and transport within an interface can be important for species that reside at phase boundaries, such as gases adsorbed on solids or surfactants at fluid-fluid interfaces. The objective is to derive more general interfacial conservation statements than those in Section 2.2. Consider a species that may be present at an interface or in either of the adjacent bulk phases. Let Cs and Ng be its surface concentration (moles m2) and surface flux (moles m¹s¹), respectively; note the differences in units from the corresponding three-dimensional quantities. The vector Ng is every- where tangent to the surface. (a) For part of an interface corresponding to surface S in Fig. A-2, state the macroscopic (integral) solute conservation equation. Assume that phase A is below S and phase B above it, such that n points toward the latter. Include the possibility of chemical reactions at the interface, trans- port to or from the bulk phases, and interfacial motion. The interface is not necessarily planar. (b) By reducing the integral equation of part (a) to a partial differential equation, show that at where N and C are the species flux and concentration, respectively, in a bulk phase. (Sub- scripts identifying the chemical species have been dropped for simplicity.) This result, which is valid instantaneously and locally, is equivalent to Eq. (5.2-2) of Edwards et al. (1991). How does it compare with what is obtained by applying Eq. (2.2-15) to a chemical species?See Answer
  • Q19: 2- Consider the arrangement of a collector tank, pump and reservoir tank shown in Figure. Taking the pump pressure requirement equation from Section 8 iv: P_{p}=\frac{1}{2} \rho_{-} x_{2}^{2}+\rho_{-} g h_{2}-\rho_{-} g h_{1}+f_{h}-\rho_{q} P_{p}=\rho g \cdot\left(h_{2}-h_{1}+f_{h}\right) And assuming the kinetic energy term is negligible gives us: This is the general equation for calculating the pressure requirement for a pump. Combined with two other Equation (B) which gives the power that needs to be supplied to the pump (Win): W_{\text {in }}=P_{p} \cdot Q / \gamma which gives the electrical power required (We): W_{e}=I . V it is possible to derive the pump specification for a series of different diameter delivery pipes,assuming a given volumetric flow rate. A reservoir tank is 100m uphill from a water source, the difference in height between the two is 20 m. It is proposed to use a pump to push the water up to the reservoir tank at a flow rate of 0.5 1/s. Two pipe diameters of ½" and 1" are available to link the two. What size pumps are required (in Watts) for each pipe diameter, assuming a pump efficiency of 50% and what electrical current is required assuming the smaller pump is chosen and we are stealing the electricity from a 110 V pylon ?. we have 100m of pipe and for a flow rate of 0.51/s the frictional head loss chart gives the following results for ½" and 1" dia. pipes: Taking the density of water as p= 1000 Kg/m³ and the acceleration due to gravity as g = 9.81 m/s².See Answer
  • Q20: Molten chocolate is a Bingham fluid that flows through an 8 cm ID, 10 m long horizontal pipe with a pressure difference of 12 kPa. Find the volumetric flow rate in L/s, closest to: A) 0.323 B) 0.11323 C) 0.00113 D) 0.113 E) 0.03223See Answer
View More

Popular Subjects for Transport Phenomenon

You can get the best rated step-by-step problem explanations from 65000+ expert tutors by ordering TutorBin Transport Phenomenon homework help.

Get Instant Transport Phenomenon Solutions From TutorBin App Now!

Get personalized homework help in your pocket! Enjoy your $20 reward upon registration!

Claim Your Offer

Sign Up now and Get $20 in your wallet

Moneyback

Guarantee

Free Plagiarism

Reports

$20 reward

Upon registration

Full Privacy

Full Privacy

Unlimited

Rewrites/revisions

Testimonials

TutorBin has got more than 3k positive ratings from our users around the world. Some of the students and teachers were greatly helped by TutorBin.

"After using their service, I decided to return back to them whenever I need their assistance. They will never disappoint you and craft the perfect homework for you after carrying out extensive research. It will surely amp up your performance and you will soon outperform your peers."

Olivia

"Ever since I started using this service, my life became easy. Now I have plenty of time to immerse myself in more important tasks viz., preparing for exams. TutorBin went above and beyond my expectations. They provide excellent quality tasks within deadlines. My grades improved exponentially after seeking their assistance."

Gloria

"They are amazing. I sought their help with my art assignment and the answers they provided were unique and devoid of plagiarism. They really helped me get into the good books of my professor. I would highly recommend their service."

Michael

"The service they provide is great. Their answers are unique and expert professionals with a minimum of 5 years of experience work on the assignments. Expect the answers to be of the highest quality and get ready to see your grades soar."

Richard

"They provide excellent assistance. What I loved the most about them is their homework help. They are available around the clock and work until you derive complete satisfaction. If you decide to use their service, expect a positive disconfirmation of expectations."

Willow

TutorBin helping students around the globe

TutorBin believes that distance should never be a barrier to learning. Over 500000+ orders and 100000+ happy customers explain TutorBin has become the name that keeps learning fun in the UK, USA, Canada, Australia, Singapore, and UAE.